注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

和申的个人主页

专注于java开发,1985wanggang

 
 
 

日志

 
 

NP完全问题  

2008-11-13 19:10:34|  分类: 名词解释 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
NP完全问题是不确定性图灵机在P时间内能解决的问题,是世界七大数学难题之一。
  NP完全问题排在百万美元大奖的首位,足见他的显赫地位和无穷魅力。
  数学上著名的NP问题,完整的叫法是NP完全问题,也即“NP COMPLETE”问题,简单的写法,是 NP=P?的问题。问题就在这个问号上,到底是NP等於P,还是NP不等於P。证明其中之一,便可以拿百万美元大奖。
  这个奖还没有人拿到,也就是说,NP问题到底是Polynomial(意思是多项式的),还是Non-Polynomial,尚无定论。
  NP里面的N,不是Non-Polynomial的N,是Non-Deterministic(意思是非确定性的),P代表Polynomial倒是对的。NP就是Non-deterministic Polynomial的问题,也即是多项式复杂程度的非确定性问题。
  什么是非确定性问题呢?有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再比如,大的合数分解质因数的问题,有没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少?也没有这样的公式。
  这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。
  完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,最终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。
  人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们於是就猜想,是否这类问题,存在一个确定性算法,可以在指数时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。
  解决这个猜想,无非两种可能,一种是找到一个这样的算法,只要针对某个特定NP完全问题找到一个算法,所有这类问题都可以迎刃而解了,因为他们可以转化为同一个问题。另外的一种可能,就是这样的算法是不存在的。那么就要从数学理论上证明它为什么不存在。
  前段时间轰动世界的一个数学成果,是几个印度人提出了一个新算法,可以在多项式时间内,证明某个数是或者不是质数,而在这之前,人们认为质数的证明,是个非多项式问题。可见,有些看来好象是非多项式的问题,其实是多项式问题,只是人们一时还不知道它的多项式解而已。
  如果判定问题π∈NP,并且对所有其他判定问题 π∈NP,都有π'多项式变换到π(记为π'∞π),则称判定问题π 是NP完全的。
  对P类,NP类及NP完全问题的研究推动 了计算复杂性理论的发展,产生了许多新概念,提出了许多新方法。但是还有许多难题至今没有解决,P=NP?就是其中之一。许多学者猜想P≠NP,但无法证明。
  评论这张
 
阅读(634)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2016